فاطمه ذوالفقاری راد

ریاضی ششم. فصل سوم ریاضی ششم

بچه ها اینو اعشاری مینویسید$$ /frac{6}{7} $$

جواب ها

برای نوشتن کسر \(\frac{6}{7}\) به صورت اعشاری، باید تقسیم 6 بر 7 را انجام دهیم. 1. وقتی 6 را بر 7 تقسیم می‌کنیم، متوجه می‌شویم که 7 نمی‌تواند به 6 برود، پس عدد اعشاری ما در ابتدا 0 خواهد بود. 2. اکنون یک نقطه اعشاری (.) می‌گذاریم و صفرهای بعد از آن را اضافه می‌کنیم. بنابراین، عدد ما می‌شود 0. 3. حالا 60 را بر 7 تقسیم می‌کنیم. 7، 60 را 8 بار (چون \(7 \times 8 = 56\)) در خود جا می‌دهد. پس 8 را به عدد اعشاری اضافه می‌کنیم. 4. باقیمانده، 60 - 56 = 4 می‌شود. حالا 40 را بر 7 تقسیم می‌کنیم، که 7، 40 را 5 بار جا می‌دهد (چون \(7 \times 5 = 35\)). پس 5 را هم به عدد اعشاری اضافه می‌کنیم. 5. حالا باقیمانده، 40 - 35 = 5 می‌شود. دوباره 50 را بر 7 تقسیم می‌کنیم. 7، 50 را 7 بار جا می‌دهد (چون \(7 \times 7 = 49\)). پس 7 را هم به عدد اعشاری اضافه می‌کنیم. 6. حالا باقیمانده 50 - 49 = 1 می‌شود. حالا 10 را بر 7 تقسیم می‌کنیم، که 7، 10 را 1 بار جا می‌دهد (چون \(7 \times 1 = 7\)). پس 1 را هم اضافه می‌کنیم. 7. باقیمانده 10 - 7 = 3 می‌شود و حالا 30 را بر 7 تقسیم می‌کنیم. 7، 30 را 4 بار جا می‌دهد (چون \(7 \times 4 = 28\)). پس 4 را هم اضافه می‌کنیم. 8. باقیمانده 30 - 28 = 2 می‌شود و 20 را بر 7 تقسیم می‌کنیم، که 7، 20 را 2 بار جا می‌دهد (چون \(7 \times 2 = 14\)). پس 2 را هم اضافه می‌کنیم. 9. باقیمانده 20 - 14 = 6 می‌شود، و می‌بینیم که به عدد 6 ابتدا برگشتیم و الگوی تکراری داریم. بنابراین، \(\frac{6}{7}\) به صورت اعشاری می‌شود: \[ 0.857142857142... \] که به صورت \(0.\overline{857142}\) نیز نوشته می‌شود. پس جواب نهایی: \[ \frac{6}{7} \approx 0.857142857142... \]

سوالات مشابه فصل سوم ریاضی ششم

Ad image

جمع‌بندی شب امتحان فیلیمومدرسه

ویژه اول تا دوازدهم

ثبت نام